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Abstract: The present paper demonstrates that the estimations of the determinants of firm innovation inefficiency can be 

obtained through the conditional mean of innovation inefficiency given a composite error. We extract the estimations of the 

determinants of firm innovation inefficiency by replacing the true parameters in the equation of the conditional mean of 

innovation inefficiency given a composite error with Maximum Likelihood estimations from the Stochastic Frontier Approach. 

This is an alternative method for the estimation of the determinants of firm inefficiency besides those which are existent in the 

relevant literature. Based on statistical theory and algebra, we first present the case where innovation inefficiency is assumed to 

be distributed as a truncated normal with a nonzero constant mean. Second, we focus on the case where innovation inefficiency 

is assumed to be distributed as a truncated normal with a mean that varies across firms. There, we show that all the change in 

the error term of the Stochastic Frontier Knowledge Production Function originates from innovation inefficiency. The latter is 

modelled as having two components: a) a function of some firm-specific characteristics (variables) and b) random component. 

Then, we advance to the estimations of the determinants of firm innovation inefficiency via a generalized Stochastic Frontier 

Approach (generalized production frontier approach). Finally, we replace the true parameters in the equation of the conditional 

mean of innovation inefficiency given a composite error with Maximum Likelihood estimations from the generalized 

production frontier approach. 

Keywords: Innovation Inefficiency, Firms, Conditional Mean Estimator, Stochastic Frontier Models 

 

1. Introduction 

This research will attempt to extract the estimations of the 

determinants of firm innovation inefficiency. This will 

demonstrate that it takes place through the conditional mean 

of innovation inefficiency given a composite error. 

The measurement of the productive efficiency of the 

constructed frontiers is first introduced by Farrell M [1]. Its 

meaning refers to the fact that the firms and farmers will 

utilize best practices and techniques and will obtain a 

maximum feasible yield (Kalirajan K and Shand R [2], see 

also Alvarez R and Crespi G [3], Pestana Barros C and Dieke 

P [4]). By contrast, inefficiency refers to any deviation from 

the maximum feasible yield and reflects the firm’s lack of 

use of the best practices. 

Regarding the determinants of technical inefficiency, the 

most empirical studies follow a two-step procedure to 

estimate its determinants (see Alvarez R and Crespi G [3], 

Kalirajan K and Shand R [2], Page J [5], Pestana Barros C 

and Dieke P [4], Pitt M and Lee L [6]). Specifically, these 

studies estimate technical inefficiency from the production 

function. There, they do not consider that technical 

inefficiency is a function of other variables. In the second 

stage, technical inefficiency is regressed on a set of variables 

and firm characteristics. These explain differences in 

technical inefficiency among firms. However, this two-step 

procedure has some shortcomings. First, technical 

inefficiency is possible to be correlated with inputs creating 

endogeneity problems. Thus, inconsistent estimations of 

parameters and technical inefficiency take place (see 
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Kumbhakar S et al [7]). Another shortcoming is also 

described by Kumbhakar S et al [7] Kumbhakar S et al [7] (p. 

280) argue that “the standard ordinary least squares results in 

the second step may not be appropriate since technical 

inefficiency-the dependent variable-is one-sided”. In addition, 

they note that the meaning of the error term in the second 

step is vague. To face these problems, Kumbhakar S et al [7], 

Reifschneider D and Stevenson R [8] and Battese G and 

Coelli T [9] suggest a single-stage estimation procedure 

where the determinants of technical inefficiency are 

explicitly introduced in the model (see also Zeebari Z et al 

[10])
1
. 

In the literature of efficiency, most empirical studies deal 

with the technical and productive efficiency (see Battese G 

and Coelli T [9], De Borger B et al [11]). As a result, the first 

contribution of the present research to the existing literature 

is that it introduces the meaning of efficiency into innovation 

process. It succeeds it by assuming a Stochastic Frontier 

Knowledge Production Function. The latter deals with the 

efficient transformation of innovation and R&D inputs to 

desirable innovation output, such as patents or/and product 

and process innovation. Based on statistical theory and 

algebra, we first present the case where innovation 

inefficiency is assumed to be distributed as a truncated 

normal with a nonzero constant mean. After, we focus on the 

case where innovation inefficiency is assumed to be 

distributed as a truncated normal with a mean that varies 

across firms. There, we show that all the change in the error 

term of the Stochastic Frontier Knowledge Production 

Function originates from innovation inefficiency. The latter 

is modelled as having the following two components: a) a 

deterministic component which includes observed firm-

specific characteristics and b) a random component. In 

addition, we advance to the estimations of the determinants 

of firm innovation inefficiency by using a generalized 

production frontier approach suggested by Kumbhakar S et al 

[7]. There, we maximize the log likelihood function by using 

differential calculus and first order conditions where 

necessary and obtain the estimations of variance and other 

parameters. Based on Jondrow J et al [12], we finally 

demonstrate that the estimations of the determinants of firm 

innovation inefficiency can be obtained through the 

conditional mean of innovation inefficiency given a 

composite error. We extract the estimations of the 

determinants of firm innovation inefficiency by replacing the 

true parameters in the equation of the conditional mean of 

innovation inefficiency given a composite error with 

Maximum Likelihood estimations of the parameters from the 

Stochastic Frontier Approach. This is the most important 

contribution of the present research and advances the relevant 

literature. 

The next section presents the model and the last section 

describes the conclusions, the limitations of the present 

                                                             

1 Here, technical inefficiency is assumed to be a function of some firm-specific 

characteristics and variables and a random component. Using this single-step 

estimation procedure, Kumbhakar S et al [7] give a more general specification to 

technical inefficiency. 

research and avenues for further research. 

2. Model 

2.1. Innovation Inefficiency Is Assumed to Be Distributed 

as a Truncated Normal with a Nonzero Constant Mean 

We consider the following Stochastic Frontier Knowledge 

Production Function (KPF)
2
: �� = �(�� ; �),                               (1) 

Taking logarithms in the both sides of equation (1), we 

have: �� = 
 + ��� + ��,                               (2) 

where ��  is the maximum possible innovation output as a 

function of certain innovation inputs, �� = (�
, ��, … . ��)′ is 

the � × 1 vector of innovation inputs, 
 is the constant term, � = (�
, ��, … , ��)′ is the � × 1 vector of coefficients which 

correspond to the innovation inputs, �� = (�
, ��, … . , ��)′ is 

the � × 1 vector of errors and � = 1,2 … , � firms. 

Here, we first assume that the error is: �� = �� + �� ,                               (3) 

where �� ≥ 0 . In addition, ��  and ��  which are distributed 

independently and identically represent the measurement and 

specification error and innovation inefficiency, respectively. 

We further assume that � and � are distributed as: 

�(�) = 
(
��∗ � !"#$)√�& (# exp [− 
� ∗  .�/(# $�],        (4) 

for � > 0 and 

2(�) =  
√�&(3$ exp [− 
� ∗  4(3$�],           (5) 

for all �. In other words, � is assumed to be distributed as a 

truncated normal with a nonzero constant mean ( 5 ) and 

variance 6.� and � is assumed to be distributed as a normal 

with zero mean and variance 64� (see Stevenson R [16]). The 

density function for � = � + � is given by: 

7(�) = 6�
�∗  8�/( $ 91 − :
∗  − /(; − 8;( $< [1 − :�∗  − /(#$]�
, (6)
3
 

where = = 6./64 , 6 = (6.� + 64�)
/� , �∗(. )  is the standard 

normal density function evaluated at ((� − 5)/6) and :
∗(. ) 

and :�∗(. )  are the standard normal distribution functions 

evaluated at (− /(; − 8;( )  and  − /(#$ , respectively. When 5 = 0, we take: 

                                                             

2 For more details about knowledge production function at a firm level, see 

Pellegrino G and Piva M [13], Catozzella A and Vivarelli M [14] and Ramani S et 

al [15]. 

3 �∗  8�/( $ = ?:∗(8�/( )/?(8�/( ). Putting 
8�/( = 7, we take �∗(7) = ?@∗(7)/?(7). 

In addition, putting − /(; − 8;( = 7
  and − /(# = 7� , we take @
∗(7
) =A(−∞ < 7
  < 7D) = E �(7
)?7
FG�H  and @�∗(7�) = A(−∞ < 7� < 7DD) =E �(7�)?7�FGG�H . 
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7(�)|/JK = 6�
�∗  8($ 91 − :
∗  − 8;( $<,            (7) 

This is the density function for � when the Aigner D et al 

[17] model takes place (see also Jondrow J et al [12]). 

In the Stevenson R [16] model, the mean of � is: L(�) = M(� + �),                               (8) 

or L(�) = M(�) + M(�),                               (9) 

or L(�) = M(�) + 0,                               (10) 

or L(�) = M(�),                               (11) 

However, 
M(�) = M(�) = E ��(�)?�NH�H ,         (12) 

or 

M(�) = M(�) = E �( 
(
��∗ � !"#$)√�& (# exp [− 
� ∗NH�H  .�/(# $�) ?�,                    (13)
4
 

or 

L(�) = M(�) = /O� + (6.P/Q2R)exp [−1/2 ∗ ( /(#)�], (14) 

In addition, the variance of � is given by: S(�) = S(�) + S(�),                      (15) 

or S(�) = 6.� + 64�,                               (16) 

or S(�) = M[(� − M(�))�] + 64�,       (17) 

or 

S(�) = M[(� − TE ��(�)?�NH�H U)�] + 64�,     (18) 

or 

S(�) = M[(� − VE � V 
W
��∗ � !"#$X√�& (# exp Y− 
� ∗NH�H
 .�/(# $�Z[ ?�[)�] + 64�,         (19) 

or 

                                                             

4 Following integration by parts, we take: E ��(�)?�NH�H = E �T�(�)UD?� =NH�H� T�(�)UD − E �D�(�)?� =NH�H �T�(�)UD − E �(�)?�NH�H . 

S(�) = 5�  O�$  1 − O�$ + 6.�  \�$  &�O& $ + 64�,     (20) 

where P = [1 − :∗  − /(#$] �
. 

In the case of 5 = 0, the mean of � becomes: 

L(�)|/JK = KO� + (6.P/Q2R)exp [−1/2 ∗ ( K(#)�],    (21) 

or 

L(�)|/JK = (6.P/Q2R)exp [0],                       (22) 

or 

L(�)|/JK = (6.P/Q2R) ∗ 1,                       (23) 

or 

M(�)|/JK = (6.P/Q2R),                      (24) 

or 

M(�)|/JK = (6.[1 − :∗  − K(#$] �
)/Q2R),    (25) 

or 

M(�)|/JK = (6.[1 − :∗(0)] �
)/Q2R),        (26) 

or 

M(�)|/JK = (6.[1 − 0] �
)/Q2R),        (27) 

or M(�)|/JK = 6./√2R,                  (28) 

Similarly, when 5 = 0, the variance of � becomes: S(�)|/JK = S(�) + S(�) =0  O�$  1 − O�$ + 6.�  \�$  &�O& $ + 64�,      (29) 

or 

S(�)|/JK = 6.�  \�$  &�O& $ + 64�,             (30) 

or 

S(�)|/JK = 6.� W[
��∗ � ]"#$] ^_
� X W&�[(
��∗ � ]"#$)^_]& X + 64�, (31) 

or 

S(�)|/JK = 6.�  [
��∗(K)] ^_� $  &�[(
��∗(K))^_]& $ + 64�,   (32) 

or 

S(�)|/JK = 6.�  [
�K] ^_� $  &�[(
�K)^_]& $ + 64�,   (33) 

or 

S(�)|/JK = 6.�  
�$  &�
& $ + 64�,           (34) 
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or 

S(�)|/JK = (#̀� ∗  &�
& $ + 64�,            (35) 

2.2. Innovation Inefficiency Is Assumed to Be Distributed 

as a Truncated Normal with a Mean That Varies 

Across Firms 

In this point, we assume that innovation inefficiency is 

distributed as a truncated normal with a mean which varies 

across firms because of variation in firm-specific factors like 

input quality, education as well as other characteristics 

(Kumbhakar S et al [7]). There, innovation inefficiency is 

made up of two components. The first which constitutes the 

deterministic component is a vector of exogenous variables 

and the second is the unobserved random component. Thus, 

innovation inefficiency can be modelled as
5
: �D = ab + c,                            (36) 

where �D  is innovation inefficiency, a = (a
, a�, … … , ad) D 
is the e × 1  vector of exogenous variables. This vector 

includes firm-specific factors like input, education and other 

characteristics which affect innovation inefficiency despite 

the fact that they do not enter into the stochastic frontier 

knowledge production function. Finally, b = (b
, b�, … . . bf) D is the e × 1 vector of coefficients 

which corresponds to the vector of exogenous variables, 

while c is the unobserved random component. 

Then, the density function for innovation inefficiency is: 

�(�D) = 
(
��∗g�hi"#G Z)√�& (#G exp [− 
� ∗  .G�jk(#G $�],   (37) 

for �D > 0 and 

2(�) =  
√�&(3$ exp [− 
� ∗  4(3$�],                       (38) 

for all �. 

Similarly, the joint density function of �D = �D + �  is 

given by: 

7(�D) = (6�
)D�∗  8G�jk(G $ 91 − :
∗  − jk(G;G − 8G;G(G $< [1 −:�∗  − jk(#G $]�
                          (39) 

where =D = 6.D /64 , 6D = ((6.�)D + 64�)
/� , �∗(. )  is the 

standard normal density function evaluated at ((�D − ab)/6D) 

and :
∗(. )  and :�∗(. )  are the standard normal distribution 

functions evaluated at (− jk(G;G − 8G;G(G )  and  − jk(#G $ , 

respectively. 

Then, the mean of �D is: L(�D) = M(�D + �),                       (40) 

or L(�D) = M(�′) + M(�),                       (41) 

                                                             

5 In other words, �D~�(ab, (6.�)D). 

or L(�′) = M(�′) + 0,                       (42) 

or L(�′) = M(�′),                       (43) 

However, 
M(�′) = M(�′) = E �′�(�′)?�′NH�H ,          (44) 

or 

M(�′) = M(�′) = E �′( 
(
��∗g�hi"#G Z)√�& (#G exp [− 
� ∗NH�H
 .G�jk(#G $�) ?�′,                       (45) 

or 

L(�D) = M(�D) = jkOG� + (6.D PD/Q2R)exp[−1/2 ∗ (jk(#G )�], (46) 

The variance of �D is S(�D) = S(�D) + S(�),                       (47) 

or S(�D) = (6.�)D + 64�,                   (48) 

or S(�D) = M[(�D − M(�D))�] + 64�,           (49) 

or 

S(�D) = M[(�D − TE �D�(�D)?�DNH�H U)�] + 64�,  (50) 

or 

S(�D) = M[(�D − mE �D m 

n
��∗g�hi"#G Zo√�& (#G exp Y− 
� ∗NH�H

 .G�jk(#G $�Zp ?�Dp)�] + 64�,        (51) 

or 

S(�D) = (ab)�  OG� $  1 − OG� $ + (6.�)D  OG� $  &�OG& $ + 64�,  (52) 

where PD = [1 − :∗  − jk(#G $] �
. Thus, (46) becomes: 

L(�D) = M(�D) =jkY
��∗g�hi"#G Zq^_
� + (6.D ([1 − :∗  − jk(#G $] �
)/Q2R)exp[−1/2 ∗ (jk(#G )�],                (53) 

Furthermore, (52) becomes: 



 American Journal of Theoretical and Applied Statistics 2023; 12(6): 180-186 184 

 

S(�D) = (ab)� V(Y
��∗g�hi"#G Zq^_)
� [ V1 − (Y
��∗g�hi"#G Zq^_)

� [ +
(6.�)D V(Y
��∗g�hi"#G Zq^_)

� [ V&�(Y
��∗g�hi"#G Zq^_)
& [ + 64�,    (54) 

2.3. The Estimation of the Determinants of Firm 

Innovation Inefficiency: A Generalized Production 

Frontier Approach 

In this point, we form the following logged likelihood 

function (see Stevenson R [16]) in order to estimate the 

determinants of firm innovation inefficiency through a 

generalized production frontier approach (Kumbhakar S et al 

[7]): lnt(�|b, =, 6�, ab) =− u
� ∗ vw6� − u

� ∗ ln2R − 

�(` ∑ ((�� − �D����J
 ) − ab)� +∑ ln [1 − :
∗(6�
(−��J
 (�� − �D��)=))] − wln[1 −

:�∗((−ab/6) ∗ (=�� + 1)_̀)],     (55) 

Taking partial derivatives, we have: 

yzu{
y| =  − 


�(`$ 2 ∑ ((�� − �D��) −��J
 ab)(−��) +
∑ 



��_∗ ∗ �
∗��J
 (−��=6�
),      (56) 

or 

yzu{
y| =  − 


(`$ ∑ ((�� − �D��) −��J
 ab)(−��) + ∑ 


��_∗ ∗��J
�
∗ (−��=6�
),     (57) 

or 

yzu{
y| =  − 


(`$ ∑ ((�� − �D��) −��J
 ab)(−��) + ∑ 


��_∗ ∗��J


�
∗  −��=(

()$,          (58) 

or 

yzu{
y| =  − 


(`$ ∑ ((�� − �D��) −��J
 ab)(−��) + ∑ 


��_∗ ∗��J


�
∗  −��(;
()$,           (59) 

or 

yzu{
y| =  


(`$ ∑ ((�� − �D��) −��J
 ab)�� − (=/6) ∑ }_∗
��_∗
��J
 ��, (60) 

In addition, 

yzu{
yjk =  − 


�(`$ 2 ∑ ((�� − �D��) −��J
 ab)(−1) +
∑ 



��_∗ ∗ �
∗��J
 g−6�
  

;$Z − w 



��̀∗ ∗ ��∗(−(1/6) ∗
(=�� + 1)_̀),           (61) 

or 

yzu{
yjk =  − 


(`$ ∑ ((�� − �D��) −��J
 ab)(−1) + ∑ 


��_∗ ∗��J


�
∗ W−  (^_
; $X −  w 



��̀∗ ∗ ��∗(−  

($ ∗ (=�� + 1)_̀),           (62) 

or 

yzu{
yjk =  


(`$ ∑ ((�� − �D��) −��J
 ab) + ∑ 


��_∗ ∗��J


�
∗  −(1/6)(

;)$ −  w 



��̀∗ ∗ ��∗(− nT;^`N
U_̀
( o),           (63) 

or 

yzu{
yjk =  


(`$ ∑ ((�� − �D��) −��J
 ab) + ∑ 


��_∗ ∗��J


�
∗  − 

(;$ + w 



��̀∗ ∗ ��∗ nT;^`N
U_̀
( o,           (64) 

or 

yzu{
yjk =  


(`$ ∑ ((�� − �D��) −��J
 ab) −  

(;$ ∑ }_∗
��_∗

��J
 +
nuT;^`N
U_̀

( o }̀∗

��̀∗,           (65) 

In turn, 

yzu{
y; = ∑ 



��_∗ �
∗[(−6�
ab=��) − T6�
(�� − �D��)U��J
 ] −
w 



��̀∗ ��∗[ − jk
( $ (−2)=�~(=�� + 1)_̀],           (66) 

or 

yzu{
y; = ∑ 



��_∗ �
∗ 9g−6�
ab  

;`$Z − g 


($ (�� − �D��)Z< −��J

2w 



��̀∗ ��∗[jk
( =�~(=�� + 1)_̀],           (67) 

or 

yzu{
y; = ∑ 



��_∗ �
∗ 9g−  

($ ∗  jk

;` $Z − T(�� − �D��)/6U< −��J

2w 



��̀∗ ��∗[jk
( ( 


;�)(=�� + 1)_̀],           (68) 

or 

yzu{
y; = ∑ 



��_∗ �
∗ 9g−  jk
(;`$Z − T(�� − �D��)/6U< −��J


2w 


��̀∗ ��∗[( jk

(;�)(=�� + 1)_̀],           (69) 

or 

yzu{
y; = ∑ }_∗
��_∗ 9g−  jk

(;`$Z − T(�� − �D��)/6U< −��J

2w }̀∗


��̀∗ [( jk
(;�)(=�� + 1)_̀],           (70) 

Finally, 

yzu{
y(` =

− u
(` + 


(� ∗ ∑ ((����J
 − �D��) − ab)� + ∑ }_∗
��_∗
��J
 9 − jk

(�;$ −



185 Vasilios Kanellopoulos:  Estimating the Determinants of Firm Innovation Inefficiency Through the Conditional   

Mean of Innovation Inefficiency Given a Composite Error 

T���|G��U;
(� < + w }̀∗


��̀∗ [ jk
(�$ ∗ (=�� + 1)_̀],         (71) 

Taking first order conditions, we have: 

yzu{
y; = 0,                               (72) 

or 

yzu{
y; = ∑ }_∗
��_∗ 9g−  jk

(;`$Z − T(�� − �D��)/6U< −��J

2w }̀∗


��̀∗ [( jk
(;�)(=�� + 1)_̀] = 0,       (73) 

Putting (73) into (71), we take: 

yzu{
y(` = − u

(` + 

(� ∗ ∑ ((����J
 − �D��) − ab)�,      (74) 

Taking again first order conditions, we have: 

yzu{
y(` = 0,                               (75) 

yzu{
y(` = − u

(` + 

(� ∗ ∑ ((����J
 − �D��) − ab)� = 0,     (76) 

or 



(� ∗ ∑ ((����J
 − �D��) − ab)� = u

(`,           (77) 

or 

w6� = 6� ∑ ((����J
 − �D��) − ab)�,           (78) 

Dividing both sides of (78) by 6�, we take: 

w ∗ (6�/6�) = [6� ∑ ((����J
 − �D��) − ab)�]/6�,    (79) 

or 

6�� = 

u ∗ ∑ ((����J
 − �D��) − ab)�),           (80) 

Equation (80) gives the Maximum Likelihood (ML) 

estimator and the solution to the problem. Advancing to the 

appropriate transformations, we also extract the estimations 

of b which is the vector of coefficients of the determinants of 

innovation inefficiency (a). 

2.4. The Estimation of the Determinants of firm Innovation 

Inefficiency Through the Conditional Mean of 

Innovation Inefficiency Given a Composite Error 

Here, we assume that innovation inefficiency is distributed 

as a truncated normal with a mean that varies across firms. 

Considering that ��~�(ab, 6.�)  and ��~�(0, 64�) , the 

conditional density function of ��  given �� , �(��|��) , is �N(ab∗� , 6∗�), where: ab∗� = (−��6.�)/6�,                     (81) 

and  6∗� = (64�6.�)/6�,                     (82) 

as Jondrow J et al [12] and Kumbhakar S et al [18] show. 

In order to estimate the innovation inefficiency at the firm 

level, we can employ the expected value (mean) or the mode 

of innovation inefficiency conditional on the realization of 

composed error of the model �� = �� + �� (see Kumbhakar S 

et al [18])
6
. Then, we take:  ��� = M[��|��] = ab∗� + (6∗�(−ab∗�/6∗))/(1 −:(−ab∗�/6∗)),        (83) 

where  �  and :  are the standard normal probability density 

function and cumulative density function, respectively. In 

turn, we obtain the individual estimates by replacing the true 

parameters in (83) with Maximum Likelihood estimations 

from the Stochastic Frontier Approach (Kumbhakar S et al 

[18]). Then, (83) can be written as: M[��|��] = ab∗�� + (6∗� �(−ab∗��/6∗� ))/(1 − :(−ab∗��/6∗� )), (84) 

Here, we have the estimation of variance as well as the 

estimation of b∗� that is the vector of coefficients of a. Thus, 

we obtain the estimations of the determinants of innovation 

inefficiency through the conditional mean of innovation 

inefficiency given a composite error. 

3. Conclusions 

The present paper demonstrates that the determinants of 

firm innovation inefficiency can be estimated through the 

conditional mean of firm innovation inefficiency given a 

composite error. We replace the true parameters in the 

equation of the conditional mean of innovation inefficiency 

given a composite error with the estimations of the 

parameters from Maximum Likelihood when we apply 

Stochastic Frontier Analysis. Here, innovation inefficiency 

has two components: a) a function of some firm-specific 

characteristics and b) a random component. In this case, 

innovation inefficiency is distributed as a truncated normal 

with a mean that varies across firms. This is the main 

contribution of the present research to the existing literature, 

and this constitutes an alternative method for the estimation 

of the determinants of firm inefficiency besides those which 

are already existent in the relevant literature (see Kumbhakar 

S et al [7]). 

A limitation of the current study relates to the fact that the 

conditional mean estimator shrinks the innovation 

inefficiency towards its mean (Wang W and Schmidt P [19], 

see also Zeebari Z et al [10]). This leads to a different 

distribution compared to the distribution of the innovation 

inefficiency. Furthermore, Zeebari Z et al [10: p. 79] argue 

that “the mean and mode are not fully representative 

characteristics of the conditional distribution of the 

inefficiency, especially if each unit is observed once”. 

Therefore, conditional mean estimator leads to an 

inconsistent estimator of the innovation inefficiency (see 

Zeebari Z et al [10]). This creates the need for further 

development of inefficiency and stochastic frontier models 

                                                             

6 The conditional mean of �� given �� gives a point prediction of �� (Kumbhakar 
S et al [18]). 
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that deal with the endogeneity bias and the inconsistent 

estimators of the innovation inefficiency. Discussing the 

limitations of the present research, we should bear in mind 

that the distribution of the conditional density function of 

innovation inefficiency differs from the distribution of the 

conditional mean estimator. This creates issues related to the 

inaccurate estimations and underestimations of innovation 

inefficiency (Badunenko O et al [20], Zeebari Z et al [10]). In 

order to face these problems, the future research should focus 

on the models that combine Stochastic Frontier Models and 

Data Envelopment Analysis (see Andor M et al [21], Tsionas 

M [22]). 
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